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Abstract

The most common forms of Human Computer Interaction (HCI) devices

these days like the keyboard, mouse and touch interfaces, are limited to

working on a two-dimensional (2-D) surface, and thus don’t provide com-

plete freedom of accessibility using our hands. With the vast number of

gestures a hand can perform, including the different combinations of mo-

tion of fingers, wrist and elbow, we can make accessibility and interaction

with the digital environment much more simplified, without restrictions to

the physical surface. Fortunately, this is possible due to the advancements of

Microelectromechanical systems (MEMS) manufacturing of sensors, reducing

the size of a sensor to the size of a fingernail.

In this thesis we document the design and development of Gauntlet-X1, a

smart glove system comprising of Inertial Measurement Units (IMU) sensors

that recognizes hand activity/gestures using combinations of neural networks

and deep learning techniques such as Long Short-Term Memory (LSTM) and

Convolutional Neural Network (CNN). The system captures IMU data and

interfaces with the host server. In order to demonstrate this prototype as a

proof of concept, we integrate to Android mobile applications based on 3-D

interactivity like the American Sign Language (ASL), Augmented Reality

(AR)/Virtual Reality (VR) applications and can be extended to further the

use of HCI technology.
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Chapter 1

Introduction

With recent advancements in Human Computer Interaction (HCI) technol-

ogy, there have been vast research on minimising the gap between humans

and computers. Humans interact with technology in their daily routine and

HCI researchers study how to provide optimum comfort and performance to

the user by integrating their daily routines with computers and various other

technologies. The application of touch gestures is, for example, currently

a big trend on our smart phones and tablets. This interactive technology

provides the user with a natural feel to the interface, making it much more

feasible to use and access. However, the biggest delimitation of this tech-

nology is that it still requires a physical 2-D surface to operate. Moreover,

a touch interface is also to a high degree constrained by the specifications

of the 2-D plane. This is where the interactive technology developed during

this thesis project comes into play where we propose to provide an ability

to interact with the real 3-D environment. The user is not constrained by
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the specifics of a 2-D plane, since the real world presents itself as a three-

dimensional canvas in front of the user. The user is given much more freedom

in movement and more ways of interaction. We provide this technology to

interact via multiple Internet-of-Things (IoT) devices in order to resolve real

world applications and issues.

There are already various peripheral devices that provide the above men-

tioned functionality. What makes our technology unique and different is that

it not only focuses on one single application area but a variety of multiple

applications that can be used just through a single device. This product is

currently in the state of ”proof of concept”, and thus we focus mainly on two

applications: 1) an American Sign Language (ASL) interpreter and 2) in-

teraction through Augmented Reality(AR). These two applications are only

chosen as demonstration cases for the prototype, but the general system can

be executed with relative ease to other application areas as well.

This thesis documents the design, development and implementation of

a prototype of a wearable glove that has embedded Inertial Measurement

Units (IMU) 1. The IMU’s are used to track the movements of each of the

four fingers and the thumb on a single hand, as well as of the hand itself. We

integrated five MPU6050 IMU’s for the fingers and one MPU9250 IMU on

the backside of the palm. The system is employed using an Arduino micro

1An IMU is an electronic devices that measures and reports linear acceleration, rota-

tional rate and heading reference provided by the inbuilt accelerometer, gyroscope and

magnetometer respectively.
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controller placed along with the MPU9250 on the back of the palm, which

collects data from the IMU’s placed on the different points of interest on the

glove. Each time a gesture is made while wearing the glove, the data from

the IMU’s for that particular gesture is recorded using a software created

through MATLAB. Using this approach, we recorded the IMU data for 10

primary gestures that we wanted to implement for the prototype. We will

go more into detailed description of the hardware in section 3.1.

The recorded data is then fed into a Machine Learning (ML) algorithm

designed using PyCharm and Keras, with Tensorflow as back-end. A typical

ML system is a set of algorithms and statistical models that computer sys-

tems use to perform specific tasks based on inference and pattern detection

instead of pre-programmed, deterministic algorithms. The ML algorithm

we developed is used to train the Gauntlet with various hand gestures from

recorded data. The ML algorithm is part of a Neural Network, a framework

of multiple ML algorithms that work together and process complex data

units. Using this method, we trained the Gauntlet to recognize gestures with

respect to the applications we mainly focused on. We have only focused on

building two applications as this is a proof of concept for a prototype.

One of the main objectives of this thesis is to use this type of data pro-

cessing unit to act as a general integrated peripheral device, exemplified as

an implementation for two applications. The two applications we targeted

are for American Sign Language (ASL) recognition, and interaction through

Augmented Reality (AR). We decided to choose ASL as an example for the
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demonstration of gesture recognition instead of the other available sign lan-

guages as it is more widely used internationally. With some more retraining,

we will be able to use it for any available sign language, making the Gaunt-

let more internationally compatible and interesting. On the other hand, the

reason we decided to target AR as our second application is so we can visu-

alize the capabilities of the gesture training in an extent within a 3-D virtual

world. It can be used for interacting with virtual objects and for learning

purposes. Through these two applications, we show the full capacity of what

the Gauntlet can offer.

1.1 Cognitive interaction

One of the biggest problems faced by hearing disabled people is to convey

their message to a person who has no knowledge of sign language. Our sign

language translation application may be a great aid in this case. It will

support communication with others more efficiently. The product is easy to

use and will easily integrate with their day to day habits. It can also be used

to acquaint sign language efficiently. We want to implement a simple and

user friendly HCI technology so that anyone can be able to use it to its full

potential.

Another field of interest our product can target is the gaming industry.

The Gauntlet can be used for various applications as the gaming field is vast

and ever growing and our product has a potential to evolve over time. It can

be easily integrated as a peripheral controller and can be used for interacting
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with both AR and VR applications.

Although these two applications are very good examples of the applicabil-

ity of our technology, the system is developed with the general aim to make

it possible to catch the hand and finger positions in combination with the

gestures. Once this is done, it is possible to transfer the result into any ap-

plication where it could be suitable to capture this kind of movements.

1.2 Hypothesis and Research Questions

We started from the hypothesis that it would be possible to create an inter-

face that would make it easier for a person with hearing deficiencies to use

sign language to communicate with people that have no knowledge of sign

language.

A person suffering from hearing deficiency communicates via sign language.

Although, most of the time the other person has no knowledge of sign lan-

guage which makes it harder to communicate. From this hypothesis, we

decided to create an interface that allows to convert sign language into text

or audio. This interface makes it easier for someone who is hearing impaired

to communicate and also to provide a surface to use this interface as a means

to learn sign language.

Our main Research Questions are:

1. Is an Arduino based solution powerful enough?
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2. What ML algorithms are best suited?

3. How precise is it possible to design such a system?

4. How many hand activities can be recognized?

5. How many more applications can be integrated into the system (IOT)?

6. How to make the product less bulky to provide better freedom to the

user?

7. How does training different aspects of the full data separately using

individual neural networks affect the accuracy of the output?

1.3 Our Contribution

This thesis has three authors, and in this project we have contributed equally

to the final result, but during some stages we have had separate areas of

responsibility. In this section we will describe both the individual and the

common, general efforts in the project and while writing the thesis.

1.3.1 Our Individual Contributions

Asif’s contributions to this thesis project are as follows:

• Developed all the necessary MATLAB scripts to gather and record data

from the Gauntlet and implementations of various filters for preprocess-

ing the collected data.
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• Developed the Python scripts for data gathering and analysis of the

various NN models.

• Analysis of one of the NN models and picking the right configuration

with respect to all the features of the Gauntlet’s data.

• Built the optimized C++ code for the gauntlet in Arduino IDE.

• Implemented the server side of Gauntlet with serial connectivity and

designed the Internet-of-Things (IoT) main hub for the Gauntlet.

Paul’s contributions to this thesis project are as follows:

• Complete research and study on the relevant literature regarding the

various areas within Machine Learning (ML) and Deep Learning that

could benefit this paper.

• Analysis of two NN models and picking the right configuration with

respect to all the features of the Gauntlet’s data.

• Implementations of all the types of NN models with Keras and Tensor-

flow for the basis of our research paper.

Vishnu’s contributions to this thesis project are as follows:

• Research on different types of AR and various implementations.

• Developed the Augmented Reality application for visualization of the

recorded gestures within a 3-D Virtual world.

• Built the C# code for the AR based mobile applications.
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• Analysis of one of the NN models and picking the right configuration

with respect to all the features of the Gauntlet’s data.

• Built the User Interface for the AR mobile applications.

• Implementation of the Internet-of-Things (IoT) network with integra-

tion with the Gauntlet.

• Implemented the client side of the Gauntlet using TCP/IP configura-

tion.

1.3.2 The Prototype - Group Effort

Our group effort have been mostly contributed towards 3 magnanimous

tasks. Initially, it was the physical design of the Gauntlet from scratch

onto a heavy duty glove with minimalist digital circuitry and component

placement for portability and compactness to tolerate free movement. Our

biggest contribution is collecting the essential raw data from the Gauntlet

for the given gestures for the functionality of neural network training. We

have stored many versions of the data sets due to the variety of recording

the movements. Last but not the least, this thesis paper was documented

collectively with all our efforts together as well.

1.4 Delimitations

This section describes the various alterations in the main scope of this

project.
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• The Gauntlet was initially intended to be dual handed devices but due

to resources and time, we have implemented only the right-hand glove

for feasibility of the thesis.

• The hardware that was developed is still a prototype and cannot be

used for commercial purposes.

• The gauntlet is at the moment not wireless as described in our speci-

fication as the factor of power supply integrated would slow down the

development of the scope of research.

• Even though we mentioned using the SensorFusion App from external

sources, it played a very small role in terms of implementation of filters

as we required many more sensors to work with.

• The training data we recorded for the development of the neural net-

works are purely configured for the Gauntlet itself as the positioning of

the sensors play a massive role on the raw data. Thus the comparison

of our IMU database with pre-existing public IMU databases.

• The implemented neural network/ ML algorithms were developed from

other sources and the HGR-net was not implemented as a base reference

as mentioned in the specification.

• The number of applications designed for this Gauntlet have been lim-

ited to two yet we didn’t implement google’s speech-to-text.

• Probabilistic/Statistic based ML models proposed in the specification

have not been implemented to compare the performance of the neural

networks we have proposed in this paper.
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1.5 Thesis structure

In Chapter 2 we summarize the various research papers we used as refer-

ences for the different aspects involved in our thesis. In Chapter 3 we discuss

about the hardware and software implementations used for the product de-

velopment. In Chapter 4 we discuss the analysis of data and possible results

of the experimental protocols. In Chapter 5 we summarize the conclusions

we obtained during our evaluation. In Chapter 6 we discuss the future works

that can be augmented on the prototype.
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Chapter 2

Related Work

Hand gesture/activity recognition (HAR/HGR) has been studied through

the use of different sensors such as Inertial Measurement Units (IMU), Sur-

face Electromyography (sEMG) sensors, Flex sensors, Radio Frequency Iden-

tification (RFID) tags and also the conventional video capture recognition.

Apart from the various studies using different sensors, there are many more

studies to achieve HAR/HGR by the types of sensor fusion techniques, Ma-

chine and deep learning algorithms. In this chapter, we discuss the relevant

literature related to Hand Activity/Gesture Recognition (HAR/HGR), Aug-

mented Reality (AR) and American Sign Language (ASL), especially the

papers investigating different deep learning architectures, wearable system

for ASL and public data sets of sensor-based HAR/HGR.
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2.1 Hand Activity/Gesture Recognition with

various ML and NN algorithms

The recognition of human activities is a well studied field, including many

daily activities such as fitness tracking and health monitoring or gestures

for interaction with devices or sign language recognition. The authors of [1]

have implemented a system with mobile sensors in smartphones. The sensor

data would run through a CNN where they propose the use of a new weight

sharing technique called Partial Weight Sharing. This technique is applied

to accelerometer data for improved signals. They ran data of 3 public data

sets, namely Skoda [2] (assembly line activities) , Opportunity [3] (activities

in kitchen) and Actitracker [4] (jogging,walking etc.) and achieved accuracies

of 88.19%, 76.83% 96.88% respectively. Even though their weight sharing

technique gave good results they have left experimenting with larger data

and broader sets of activities for future studies.

Similar to this, another paper [5] also ran their CNN model from input

data of multiple on-body worn inertial sensors which are multi-channel time

series signals. In this they propose a deep architecture of CNN to investigate

the multi-channel time series data as given in Figure 2.1. This architecture

uses temporal convolution and pooling to identify salient features from times

series data. All these salient patterns are combined with multiple channels

and then mapped onto the classification on human activities. They have used

the Opportunity data set to acquire good results.
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Figure 2.1: Illustration of the CNN architecture used for a multi-sensor based

human activity recognition problems [5]

Another study [6] with just a single IMU sensor on the wrist used 2 deep

learning algorithms 1-D CNN and RNN for 5 activities ( standing, walk-

ing, running, walking upstairs and downstairs) from the Physical Activity

Monitoring for Aging People (PAMAP2) [7] database. They have achieved

accuracies of 95.43% and 96.95% for CNN and RNN respectively . These are

really good results considering the use of only one IMU sensor, However, it

is only feasible for this kind of macro human activities.

Compared to another study [8] which also uses a single wrist IMU sensor

but for a different activities - data set (Opportunity [3] : kitchen activities)

on a RNN model they achieved an average accuracy of 80.09%. In this

paper [9] they developed a 2-D kernel CNN model given in Figure 2.2 to

capture spatial dependencies of sensors and their axes and local dependency

over time. Sensors in different position were grouped by the type of data to

capture spatial dependency. They achieved an accuracy of 97.92% for the

Skoda data set with 2-D CNN compared to 1-D’s 97.40%. The reason they

have used 2-D is the usage of multiple sensors (in both smart phones and
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smart watches).

Figure 2.2: The proposed single IMU- and RNN-based hand activity recog-

nition system [8]

A very interesting study [10] where they focus on every aspect of HAR i.e.

the position of sensors, the sampling rate of raw data from sensors and sensor

fusion techniques on different sensors differently for different activities using

a 2 level ensemble technique which assigns custom weights and modalities

after analysis from data of different sensors. They have experimented on 9

different activity labels. They also mentioned that they aim to study this

further by adding environmental(GPS) and physiological sensors to get a

better understanding of patterns and recognition of changes in these patterns

over time.
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2.2 American Sign Language (ASL)

This paper [11] builds a wearable system consisting of IMU and sEMG

sensors for recognizing around 80 commonly used signs in the American Sign

Language. They used four well known classification algorithms NaiveBayes,

NeareastNeighbor, Decision Tree [12] and LibSVM [13] and they achieved an

accuracy of 96.16 for 40 selected features. This paper shows the significance

of sEMG sensors in increasing the accuracy of ASL recognition.

2.3 Finger and hand tracking

With the large advancements in Microelectromechanical systems(MEMS)

technology we now have IMU’s as small as our fingernails or even smaller.

This lets us explore a large number of possible hand and finger movements

in different permutations and combinations for interaction with computers

or other devices. A glove was developed [14] called ’GyrGlove’ with data

captured by Python software where they used inertial based motion capture

technique on a host computer. This captured data goes through a set of IMU

calculations on MATLAB. The 3-D visualization of this glove was developed

on PANDA3D. This paper laid a good foundation related to gestures and

pattern recognition.
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2.4 Augmented Reality

When it comes to the field of AR, we did not dwell deep into research and

did not refer to much research papers more than online tutorials as our

focus on AR was just as an application and not as research. But few of the

research papers we looked into for AR definitely helped us pave the way for

understanding what we wanted our AR applications to achieve.

One of the research papers that intrigued our interest relevantly is [15].

By combining low cost Microelectromechanical system (MEMS) IMU’s and

a wireless body sensor network (BSN), the authors were able to provide a

highly accurate human body motion capture system which is visualized on a

virtual environment using Unity3D. Another research paper that caught our

attention and was more inclined into AR is [16]. This paper gives a really

detailed and more in-depth understanding about Augmented Reality and it is

applications. By combining compact light-weight IMU’s, GPS and Computer

vision, the author was able to create an accurate head pose tracking system

forAR.

We tried to visualize the orientation and position of the glove in real time

on Unity3D. Even though we could map the orientation of the glove, we

were not able to achieve the position mapping in a 3-D space as we did not

have the proper hardware to achieve it. It would require us to use a Global

Positioning System (GPS) and a computer vision based system but our goal

is to build a product which is feasible and compact. Hence, we decided to
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visualize the gesture interactions with virtual objects rather than mapping

the glove itself on a virtual environment.
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Chapter 3

Implementation

We will separate the description of the implementation of the Gauntlet into

three separate parts such as firstly describing the physical design of the pro-

totype and the data acquisition process, and secondly describing the analysis

through the use of Machine Learning and signal processing, and finally the

applications designed for the Gauntlet.

3.1 Glove Hardware Design and Data Acqui-

sition

We designed a single wearable glove prototype based on IMU sensors that

collects time-series inertial data sampled at 25Hz as can be seen in Figure 3.1.

There are two types of IMU sensors that are deployed onto the glove: One

MPU9250 and five MPU6050’s. The MPU6050 is positioned at every finger-
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nail including the thumb whereas the MPU9250 is positioned at the centre

of the back of the palm. All these senors are interfaced into the MCU i.e.

Arduino Nano. Due to its features of compactness, low power consumption

and cycle speed, we chose this microcontroller to integrate all the sensors.

Lets discuss how we communicate and integrate these sensors.

(a) (b)

Figure 3.1: Gauntlet-X1 Prototype

We know two serial communication protocols that work with these sensors

i.e. the Serial Peripheral Interface (SPI) and the Inter-Integrated Circuit

(I2C) protocols. The SPI would be the ideal choice as multiple sensors can

be communicated with ease using the chip select pins. But the wiring will be

more complex and unnecessary making the Gauntlet bulkier with wires. With

I2C, we cannot have more than two of the same sensors due to the competency

of the alternate addresses. According to the [17] documentations, using the

ADDR pin in MPU6050, we can change the address from 0x68 to 0x69. That

limits the number of MPU6050 units we can use but isn’t a problem for the

MPU9250, as only one is used and it has a unique address of its own. But

considering the fact that the speed of the clock in Arduino is fast enough
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to change this address, we chose to implement a polling solution to fix the

multiple interfaces of these sensors using I2C itself. We know that the data

collected by the MCU will be from one sensor after the other i.e. the palm,

then each finger respectively from the thumb to the pinkie. While we are

shifting to each sensor we can change the address before reading the registers

and switch back the original address of the sensor then carry on with others

as well. This is a concept similar to the one implemented in the SPI where a

CS pin is used to switch between slave modules respectively. By optimizing

the library in this way, using minimal setups and no calibration, raw data

can be collected by the Arduino at the maximum optimized sampling speed

of 25Hz from all sensors semi-simultaneously.

The MCU is placed on a mini breadboard along with the palm sensor and

all the sensors, using robust wiring, are connected directly to the MCU. All

the modules are fixed on the glove using simple Velcro which is sewn onto

the glove. Initially the system was proposed to use two gloves simultaneously

(one for each hand), both wireless and battery driven but for the sake of

debugging and ease of development as a prototype, we designed the prototype

to be single-gloved right-handed and a wired connection over a USB port

provided by the Nano. However, now that we have calibrated the prototype

for one hand, the addition of a second glove becomes more or less a technical

detail.

Once the Gauntlet was ready for use, our next objective was to establish

what all the incoming data can be used for and how we can process and
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analyze it for the most effective way to track hand movements and relay

gestures. To proceed with this, we need to understand the data we gather.

The next section will explain how to deal with this scenario.

3.2 Data Preprocessing with Pose estimation

In order to increase the efficiency of the calculations, the data collected

needed to be preprocessed, using the various techniques described below.

We studied many research papers to understand encountered problems

and issues that need to be addressed, such as treating the inertial data with

various filtering methods, noise cancelling and sensor fusion techniques as

mentioned earlier in Chapter 2. Most of these algorithms were implemented

via MATLAB scripts so lets discuss these concepts in detail and evaluate

how our data could be prepared in order to make more sense.

3.2.1 Madgwick/Mahony Filter

A Madgwick/Mahony Filter gives us orientation information from a com-

bination of 9DoF/6DoF inertial data. According to the Figure 3.2, the filter

uses a quaternion representation, allowing accelerometer and magnetometer

data to be used in an analytically derived and optimized gradient-descent

algorithm to compute the direction of the gyroscope measurement error as a

quaternion derivative. Considering tracking of the motion of the hand, gain-

ing orientation information might be sufficient to understand and visualize

24



the movements easily. But this is yet to be worked on. Using MATLAB

scripting, we created classes for respective filters and set up serial communi-

cation with the Gauntlet to gather data continuously so that we can process

the filter at a particular sampling rate. Each sensor will instantiate its own

filters.

Figure 3.2: Block Diagram of the Operations in a Madgwick/ Mahony filter

for 9DoF IMU

3.2.2 Extended Kalman Filter (EKF)

EKF is an extended version of the Kalman filter algorithm that estimates

unknown variables for a non-linear based model. The EKF works by trans-

forming the nonlinear models at each time step into linearized systems of

equations. Generally in a single-variable model, we would do this using the

current model value and its derivative. But in our case, we should safely

assume that our system is a multi-variable non-linear system and the gener-

alization of the multiple variables and equations is a Jacobian matrix com-

putation. Then the linearized equations can be used in a similar manner
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to the standard Kalman filter. So we used EKF in a calibration step to

check if it could improve the noise and estimate the relative position and

orientation.

Raw data gave better accuracy while training and testing data with our

NN. Even though filters increased efficiency, the computation time and mem-

ory space that the application requires, seems unreasonable for the intentions

of this thesis paper. We shall explain in detail about data processing based

on it’s reduced predictive accuracy and the excessive processing requirement

in section 4.

3.3 Machine Learning (ML) Architectures

Human activity recognition is the research of classifying sequences of iner-

tial sensory data recorded by specialized harness test-beds or smart phones

into known well-defined movements. Classical approaches to the research

involves hand crafting features from the time series data based on fixed-sized

windows and training Machine Learning (ML) models, such as ensembles

of decision trees. The difficulty is that this feature of engineering requires

strong expertise in the field.

The amount of data that can be collected with the Gauntlet glove is very

large and may show small, but important variations, and therefore the data

needs to be analysed using methods developed essentially for this purpose.

Obvious candidates for this type of data are the various methods used for

26



Machine Learning (ML). However, selecting the right kind of ML system

and model is not easy. In this section we will discuss the various methods

considered for the project.

Recently, deep learning methods such as Recurring Neural Network (RNN)

like Long Short-Term Memory (LSTM) networks and variations that make

use of one-dimensional Convolutional Neural Networks (CNNs) have been

shown to provide state-of-the-art results on challenging activity recognition

tasks with little to no data feature engineering, instead using feature learning

on raw data. In this part, we are going to describe the different algorithms

implemented using supervised learning.

3.3.1 Long Short-Term Memory (LSTM) Model

LSTM network models are a type of Recurrent NN that will be able to

learn and remember over long sequences of input data as given in Figure 3.3

[18]. They are intended for use mostly with data that is comprised of long

sequences of data, up to 200 or 400 time steps. Considering our activity

recognition, it would be great fit to use a LSTM network. The model itself

can support multiple parallel sequences of input data, including every axis

of the inertial data. The model learns to extract features from sequences of

observations and how to map the internal features to different HAR/HGR

classes. The advantage of using LSTMs for sequence classification is that they

can learn from the raw time series data directly, and in turn does not require

domain expertise to manually engineer input features but we try different set
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of features. The model can learn an internal representation of the time series

data and ideally even achieve comparable performance to models fitted onto

a version of the data set with engineered features.

Figure 3.3: Description of the LSTM Architecture

We are going to define the model as having a single LSTM hidden layer

followed by a dropout layer to reduce over-fitting the model to the training

data. Additionally, a dense fully connected layer is used to interpret the

features extracted from the LSTM layer in order to make the predictions.

The efficient Adam version of stochastic gradient descent is used to optimize,

and the categorical cross entropy loss function will be used as we are trying

to solve a multi-class classification problem.
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3.3.2 CNN-LSTM model

We are going to use a CNN model along with the LSTM model as given in

Figure 3.4 except there is one complication. [18] The entire CNN model can

be wrapped in a Time-Distributed layer to allow the same CNN model to

read in each of the given sub-sequences in the window. This wrapper applies

a layer to every temporal slice of an input. We define the CNN models with

1-D convolution layers that convolve with the layer input over a single spatial

(or temporal) dimension to produce a tensor of outputs. The parameters we

use for this layer is as follows: filters=128, kernel size=4 and activation as

rectified Linear unit, following with a dropout layer and 1-D pooling layer.

The extracted features are then flattened and provided to the LSTM model

to read, extracting its own features before a final mapping to an activity is

made.

Figure 3.4: Description of the CNN-LSTM Architecture
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3.4 American Sign Language (ASL)

One of the typical applications that can be elaborated from hand gestures

is the recognition of sign language. For the example, we chose to detect ASL,

since it can be said to serve as one of the predominant sign language among

the hearing impaired community. For practical reasons our main focus is on

the alphabetical signing that augments the vocabulary of ASL. Considering

the rhythm, speed and movement of every letter and digit, the gauntlet will

be a good fit to test if a real-time application for ASL is possible. Most of

the letters have stationary gesture while a few have movable gestures which

made it apt for us to test. Out of the 26 characters in the alphabet, we are

developing HAR/HGR with 5 alphabet characters that are stationary and

different orientations. Figure 3.5 shows the five different signs being signed in

real-time. Note that there are a few signs that use both position and motion

together, which complicates the detection process. We will discuss how we

trained the ML models for these gestures in a later part of the thesis.
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Figure 3.5: All the alphabet signs in ASL

3.5 Augmented Reality

Augmented Reality (AR) is the presentation of and the interaction with a

virtual object in the real world. In simple terms, AR brings a virtual object

into the real world, which the user is then able to interact with as if it was

really placed in the environment, using different peripheral devices. AR tech-

nology is transforming the way companies design, manufacture, operate, and

service products at a fast rate. It is one of the best approaches for visualizing

virtual concepts in the 3-D world. We built two AR applications to visualize

what the Gauntlet is capable of achieving with gestures in the virtual world.

The applications are built using the Unity engine and Vuforia.
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Unity [19] is one of the most popular development platforms for creating

games and applications in 2-D, 3-D, VR andAR. The Unity engine provides

users with a chance to experiment with a lot of features that are simple and

easy to learn. The User Interface is comprehensive, and they provide various

online tutorials.

Vuforia [20] is an AR integration platform created by the global software

company PTC, who is leading in the industrial innovation platform. Vuforia

is globally known as one of the major software systems used within Indus-

trialAR. It is the foremost technology used for integrating AR with today’s

industrial enterprise. It is one of the most widely used software for digital

eye-wear and hand-held devices.

Unity has partnered with Vuforia to create one of the best AR creation

platforms available. The User Interface makes it both appealing and simple

to learn. Unity also provides the user with the choice to work on any platform

such as Windows, Linux, Android, IOS etc. This way we were able to create

the AR applications also for an Android platform, making it easier to present

our AR applications through our hand-held devices.

During the implementation, we tried to visualize the orientation and po-

sition of the glove in real time on Unity3D. Even though we could map the

orientation of the glove, we were not able to achieve the position mapping

in a 3-D space as we did not acquire the proper hardware to achieve it. It

would require us to use a complementary (Global Positioning System (GPS))
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or a computer vision based system but our goal is to build a product which

is feasible and compact. Hence, we decided to visualize the gesture interac-

tions with virtual objects rather than mapping the glove itself on a virtual

environment.

3.5.1 Different types of AR

There are various methods in AR to incorporate a virtual object into the

real world. Each method has their own outcomes and advantages depending

on the scale of the AR application. Below, we have explained these methods

in brief.

Marker based AR – This method is also known as Recognition basedAR.

The desired virtual object is ”placed” on a recognized physical target or a

”marker”. The virtual object appears into the real world with the help of this

existing physical marker. These markers can be of different types. The more

distinctive and unique the marker, the better it is for the device camera to

recognize. Image targets are one of the easiest ways to place a virtual object.

Image targets include flat objects such as paper, magazines, photographs

etc. When the device camera recognizes the marker, the virtual object will

be tracked to its position on the marker.

Marker-less based AR – This method does not involve the use of markers.

The virtual object is placed wherever the user wants to. The object usually

appears to look like it is floating in mid-air, but it is possible to place the

object on a flat surface. The placement of the virtual object is implemented

by the device used to view the virtual object. With the help of Vuforia and
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ARCore by Google, the device will scan the room for flat surfaces where the

user can place the virtual object, in the case of touchscreen mobiles with a

simple touch on the screen. This type of AR eliminates the need of a physical

marker as any flat surface can be used as a ground.

Location based AR – This method is similar to the marker-less AR, it

does not require a specific marker to position the virtual object. The main

difference is that it is only based on information from the position sensors and

Geo location devices, i.e. mostly GPS. This type of AR is mainly used over a

wide area or various locations or even globally, like in the mobile applications

Ingress and PokemonGo. Due to its use of the device’s GPS, the positioning

of the virtual object is more accurate compared to the other types.

As our application is small and just focuses on a small area of interest, we

decided to work with Marker-less AR. Using this method, we visualized the

five movable gestures in a 3-D virtual world through a AR mobile applica-

tion.

3.6 Experiment protocols

As an initial experiment for development purposes, we collected gesture

data from ourselves, 3 males from the age 24-26, heights ranging from 166

-178 cm and all right-handed. Lets discuss the approach in which data is

recorded.
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Figure 3.6: List of all the Stationary gestures for training

Figure 3.7: List of all the Movable gestures for training

Initially the first approach was to record the data based on the actual

movement of signing a gesture i.e. from hands normal position to doing the

gesture and finally back to the hands normal position. The data set has no

constraints on the window sizes so each sample had a varying size from 30-50

time steps, which corresponds to 120-200ms respectively.

However, for the implemented neural networks above, it is not possible to

train the neural network (NN) without a fixed data structure for the data

samples due to the constraint of a fixed input shape of the networks. Thus
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the data sets will have to be recorded and trained individually for stationary

and movable gestures in separate networks also considering the fact that each

type of gesture has a varied timing of completing the gesture i.e. lasting for

several more milliseconds. This is why we recorded the two different types of

gestures with window size of 20 and 40 time steps while having two different

sets of experimental protocols for each NN data analysis. According to the

training data for fitting, we can represent our data as (samples, time steps,

features). As each time step is every 40ms, every data set sample is recorded

for 1.6s and 0.8s respectively. Table 3.1 is the list of gestures we have collected

data for.

No. Activity Type Duration (ms)

1 Aph. A

Stationary

3,980

2 Aph. B 4,000

3 Aph. C 3,980

4 Aph. D 3,980

5 Aph. E 4,000

6 NULL 4,020

7 Left to Right

Movable

8,120

8 Right to Left 8,120

9 Down to Up 8,120

10 Up to Down 8,120

11 Circle 8,120

12 NULL 8,200

Total 72,760

Table 3.1: Various Gestures recorded for training neural networks

The first 5 gestures are stationary gestures meaning there will be no move-

ment involved when signing the gesture, while the next 5 consists of distinc-
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tive movements thus called movable gestures. Additionally to this, we have

added another activity to each of the two categories called the ’null’ gesture.

We have introduced this neutral gesture, which is basically no movement in

the sensor data, i.e., the general idle position of the hand when standing and

sitting, to make the relevant gestures more accurate to predict.

Time step

Full Hand

Palm
Fingers

Thumb Index Middle Ring Pinkie

Acc Gyr Mag Acc Gyr Acc Gyr Acc Gyr Acc Gyr Acc Gyr

1 2-4 5-7 8-10 11-13 14-16 17-19 20-22 23-25 26-28 29-31 32-34 35-37 38-40

Table 3.2: Data format of the Gauntlet

The Table 3.2 describes the Data format of the information received from

the Gauntlet and how we classify its channels for experimental protocols.
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Exp Type of gestures Type of data

1

Stationary

Palm

2 Fingers

3 Pure Acc

4 Pure Gyr

5 AccMag

6 GyrMag

7 AccGyr

8 All

9

Movable

Palm

10 Fingers

11 Pure Acc

12 Pure Gyr

13 AccMag

14 GyrMag

15 AccGyr

16 All

Table 3.3: Classification of Experiments - LSTM / CNN-LSTM

Using the Tables 3.1 and 3.2 describing our data-format, type of gestures

and classification of the experiments, we implement Table 3.3 describing pro-

tocols to analyze these models based on accuracy, losses and prediction data

to find the best working model that can describe our HAR/HGR effectively.

Each of these experimental tables are implemented for each model we have

described above in a server which is discussed later in the chapter. The

server will be adopted on a PC equipped with Intel Core i7-3537U @ 2.5 Ghz

CPU.
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While we are acquiring various types of data sets, in order to find the best

model among these protocols, we still need to manually tune the configuration

of the defined model based on the nodes of the various layers, the rate of

dropout layer, training batch size and number of epochs to train the model

without overfitting/underfitting the training data.

3.7 Applications

As we mentioned previously, we built two Android applications using the

Unity engine based on AR technology. We have described the functions of

both the applications in brief, below.

Alphabets - This application is used to visualize the stationary gestures

made by the Gauntlet in the real world. This AR application, as in Figure 3.8,

consists of a white box with 5 alphabets within (A to E). Depending on what

sign language is made by the user wearing the Gauntlet, the corresponding

alphabet pops out of the box in real time. This is a good way to visualize the

ASL as alphabets in the virtual world and also provides a learning experience

to the users.
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(a) (b) (c)

Figure 3.8: Screenshots of the Android application ”Alphabets” (a) start of

the app, (b) when alphabet ’D’ is signed, (c) when alphabet ’C’ is signed.

The Cube - This application is used to visualize the moving gestures made

by the Gauntlet in the real world. As the name suggests, the AR application,

as in Figure 3.9, consists of just a white cube with some custom inbuilt effects

and animations. Depending on the moving gesture made by the user wearing

the Gauntlet, the cube performs an animation. The moving gestures used

for this application are the motion of the hand upwards, downwards, to the

left, to the right and a circle motion in front of the user. Each gesture has

its own corresponding animation created and the application reacts to the

gestures in real time.
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Figure 3.9: Screenshot of the Android application ”Cube” shows animations

based on the moving gestures.
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3.8 Server and Internet-of-Things (IoT)

Figure 3.10: Screenshot of User Interface (UI) requesting for the server’s IP

address.

We developed a server module for data collection and preprocessing for the

Gauntlet. Considering the sample rate and large amount of data accumulated

at the Gauntlet side, we established a serial connection to the Gauntlet. De-

pending on performing test runs or deploying applications based on the mod-

els created, the module suffices. Using basic socket connectivity(TCP/IP),

any mobile running theASL application, as in Figure 3.10, can connect to the

server module via entering the IP address of the server into the applications

interface.

The server can also be connected to multiple cellphones by switching au-

tomatically to the respective application as described in Figure 3.11. So

to summarize the server module, it consists of three different sub-modules:
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Gauntlet connectivity, Internet-of-Things (IoT) Application Manager, Data

Acquisition/Prediction manager.

Figure 3.11: Block Diagram of the operations for Gauntlet’s server
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Chapter 4

Data Analysis

In this chapter we will go deeper into the matter of data analysis of the

implemented algorithms and neural networks that have been described in

chapter 3 and acquiring its results.

4.1 Impact of Preprocessed Data

Considering the algorithms we had discussed in the previous section, we

employed these sensor fusion techniques with all the data i.e. accelerometer,

gyroscope and magnetometer of each sensor module.

After we implemented these techniques in MATLAB and collected data

from the Gauntlet at the given sampling rate, we came to the realization

that some of the data is being lost from the Gauntlet while preprocessing all
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the sensors during fusion. This is due to the heavy load of processing all the

sensors in parallel given that we have six sensors to gather data from and to

fuse. To dwell even deeper into the understanding of this problem would be

a whole other area of research. Thus, we decided to see how these data would

work offline with Neural Networks. Before we show the analysis in brief, we

always split the data sets into 80% training data and 20% test data when we

evaluate the Neural Network models. We then test these models using the

Stationary data sets for now.

Initially we experimented by converting the raw data sets that were ac-

quired by our fellow volunteers, into orientation or quaternion representations

to feed into the Neural Networks. As we know, the current data set consists

of 40 features including the timestamp. After converting using Madgwick

filter, the preprocessed data outputs us 19 features including timestamp.

These features are orientation representations i.e. roll, pitch and yaw for

each sensor. With our base configuration of the Neural Network, we tried to

train the LSTM model using the full data set (All) in this representation. It

turns out the training accuracy does not increase to more than 33.6%, and

thus our test accuracy dropped as well. Without hesitation, we realized that

converting the data sets into other representations would not be a suitable

method to proceed for the applications we have designed. So we tried even

EKF on the data sets to give us quaternion representations. The prepro-

cessed data outputs from 40 features to 25 features as each sensor gives us

4 vector quaternion. Again, with the rudimentary basic LSTM model, we

fit these quaternion data sets accordingly to evaluate the performance of the

45



model. To our understanding, the training accuracy seems to overfit from

the second epoch itself. Vaguely, it doesn’t make sense.

From all these implementations, we assumed that using filters to fuse data

and reduce noise would also affect the training process of the models. We

also took into consideration of tuning the configuration of the model i.e. the

number of nodes in each layer, the dropout rate and the batch size. But the

model with the best training accuracy and test accuracy gave us not more

than 73.4%. So far, this is the impact of sensor fusion over the data sets that

can be fit into the Neural Network models.

4.2 Impact of non-processed data

Since sensor fusion didn’t work out so well, we decided to try training the

models using the raw and non-calibrated data available to us. Initially, we

set the basic configuration of the LSTM model and tried fitting all data sets

which have window sizes of 20 time steps. To our surprise, we noticed that

the training had a much better performance compared to the previous data

sets. The training accuracy was shooting to 99.8% from epoch 0 to 10. While

training had good results, the test accuracy also gave us 99% accuracy with a

loss of 3-4% which is a good start to see how well the gauntlet could perform

in real time. Lets examine the experiment protocols for each model we had

defined in the previous section:
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4.2.1 Experiments for Stationary data sets in LSTM

1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

350 0.5 150 All 99.690% (+/-0.438) 1.054% (+/-0.719) 99.167% (+/-0.900) 3.311% (+/-3.302)

400 0.5 200 All 99.148% (+/-1.205) 2.447% (+/-2.752) 99.306% (+/-0.196) 2.523% (+/-1.087)

400 0.25 200 Fingers 99.977% (+/-0.046) 0.060% (+/-0.100) 98.583% (+/-0.204) 4.592% (+/-0.989)

400 0.25 200 PureGyr 99.977% (+/-0.046) 0.139% (+/-0.213) 98.667% (+/-0.408) 6.081% (+/-2.523)

Table 4.1: Optimal Experiments of LSTM model for Stationary Gestures

As we can see from Table 6.1 in the Appendix, 56 experiments with varied

model configuration of the model and type of features have been implemented

to find the closest optimal model of LSTM for Stationary gestures. When we

sort the table based on the training accuracy and test accuracy, we pick op-

timal choices as given in Table 4.1 and chose the best of model which has the

configuration of 400 neurons on the 1st LSTM input layer, a dropout rate of

0.5, 200 neurons in the 2nd hidden dense layer and training with all the fea-

tures of the data set. The accuracy of training and test are close to 99.148%

while the loss doesn’t go more than 2.5%. Further, we fine tune the model

based on epochs and batch size to see if there will be any difference. In order

to validate if this model would be a good choice, we read more into its con-

fusion matrix of the test samples and the see the performance in real-time pre-

dictions.
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(a) (b)

Figure 4.1: Confusion Matrix of the LSTM model for Stationary Gestures

(a) w/o normalizing (b) w/ normalizing

Looking at Figure 4.1, it portrays the confusion matrix of the predicted

labels with the true labels using the test data sets which again are 20% of

the main data set. As we can see, the predictions have been extraordinarily

accurate in one of the trials which gave us exact classification of the stationary

gestures. In Figure 4.2 this graph is created using Google’s Tensorboard that

is easily available to us to read more into the training analysis of the defined

model. The training process has pretty much stopped at epoch 14 giving us

the optimal training results without overfitting or underfitting the model in

terms of accuracy as well as loss. Thus we conclude to use this model for

our main application for the server for stationary gestures among the LSTM

experiments.
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(a) Epochs Vs. Training Accuracy (b) Epochs Vs. Training Loss

Figure 4.2: Training performance of the LSTM model for Stationary Gestures

4.2.2 Experiments for Movable data sets in LSTM

1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

400 0.25 200 All 100.000% (+/-0.000) 0.037% (+/-0.001) 100.000% (+/-0.000) 0.185% (+/-0.035)

400 0.25 150 All 100.000% (+/-0.000) 0.038% (+/-0.002) 99.863% (+/-0.193) 1.216% (+/-0.083)

400 0.25 200 All 100.000% (+/-0.000) 0.037% (+/-0.001) 100.000% (+/-0.000) 0.185% (+/-0.035)

400 0.5 200 All 100.000% (+/-0.000) 0.071% (+/-0.001) 100.000% (+/-0.000) 0.106% (+/-0.014)

Table 4.2: Optimal Experiments of LSTM model for Movable Gestures

As we can see from Table 6.2 in the Appendix, again 56 experiments with

varied model configuration of the LSTM model and type of features have

been implemented to find the closest optimal model of LSTM but for mov-

able gestures. When we sort the table based on the training accuracy and

test accuracy, using the optimal choices as given in Table 4.2, we find that

the configuration of 400 neurons on the 1st LSTM input layer, a dropout

rate of 0.25, 100 neurons in the 2nd hidden dense layer and training with

all the features of the movable data sets. In this case, the accuracy of the

training and test have given us surprisingly 100% while the loss is collectively
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lesser than 1% which is almost negligible. Since the model gave us quite an

adequate result on the training process, we avoid trying to fine tune the con-

figuration at the moment and use this model to further examine its analysis.

(a) (b)

Figure 4.3: Confusion Matrix of the LSTM model for Movable Gestures (a)

w/o normalizing (b) w/ normalizing

Looking at Figure 4.3, it describes the confusion matrix of the predicted

labels with the true labels using the test data set. As we can see, the pre-

dictions have been very accurate in one of the trials which gave us again the

exact classification of the movable gestures. When we look at Figure 4.4, the

training process has stopped at epoch 2 giving us the linear results without

overfitting or underfitting the model even after epoch 10. Thus we decided

to use this model for our main application for the server in real-time for

movable gestures among the LSTM experiments.
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(a) Epochs Vs. Training Accuracy (b) Epochs Vs. Training Loss

Figure 4.4: Training performance of the LSTM model for Movable Gestures

4.2.3 Experiments for Stationary data sets in CNN-

LSTM

1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

200 0.1 50 PureGyr 100.000% (+/-0.000) 0.431% (+/-0.033) 95.417% (+/-0.340) 13.945% (+/-0.443)

150 0.2 50 PureGyr 100.000% (+/-0.000) 0.561% (+/-0.071) 95.556% (+/-0.520) 14.302% (+/-1.833)

200 0.2 100 Fingers 99.845% (+/-0.219) 0.687% (+/-0.750) 99.167% (+/-0.340) 2.295% (+/-0.586)

200 0.1 50 AccMag 96.516% (+/-0.810) 8.761% (+/-2.562) 99.444% (+/-0.520) 2.586% (+/-0.789)

Table 4.3: Optimal Experiments of CNN-LSTM model for Stationary Ges-

tures

As we can observe from Table 6.3 given in Appendix, 56 experiments with

varied model configuration of CNN-LSTM model and type of features have

been implemented to find the closest optimal model for Stationary gestures.

Just as we did before, we have sorted the table as given in Table 4.3 based

on the training accuracy and test accuracy to find the best of model even

though overall the difference in each model gives us substantial appropriate
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results. After consideration, we pick the configuration of 200 neurons on

the 1st LSTM input layer, a dropout rate of 0.1 and 200 neurons on the

second hidden dense layer while the time-distributed wrapper remains to be

defined as the same basic configuration. This model was able to give us great

results with all the features of the data set with training and test accuracy

of collectively 100% and loss of again less than 1%. In this case, we didn’t

have to fine tune the configuration like the LSTM model we had created

previously for movable. Lets try to analyze more into this suitable model

using the confusion matrix and training process.

(a)
(b)

Figure 4.5: Confusion Matrix of the CNN-LSTM model for Stationary Ges-

tures (a) w/o normalizing (b) w/ normalizing

According to Figure 4.5, even though the accuracy and losses of the train-

ing and test process were great, the confusion matrix seems to still show us

that the predictions were not absolute yet. The stationary gesture alphabet

sign for ’c’ and for ’d’ still aren’t possible to differentiate from each other
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with the classification. Even though the alphabet sign for ’c’ has a different

orientation compared to the others, the model seems to be unable to classify

the comparison with the alphabet sign for ’d’ accurately. The Figure 4.6

shows us exponentially substantial results giving us what we need. Thus, we

decided to not go along with this model for stationary gestures as the LSTM

model gave us better results overall.

(a) Epochs Vs. Training Accuracy (b) Epochs Vs. Training Loss

Figure 4.6: Training performance of the CNN-LSTM model for Stationary

Gestures

4.2.4 Experiments for Movable data sets in CNN-LSTM

1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

200 0.1 100 All 100.000% (+/-0.000) 0.035% (+/-0.003) 100.000% (+/-0.000) 0.038% (+/-0.012)

200 0.1 50 All 100.000% (+/-0.000) 0.049% (+/-0.012) 100.000% (+/-0.000) 0.039% (+/-0.013)

200 0.1 100 All 100.000% (+/-0.000) 0.035% (+/-0.003) 100.000% (+/-0.000) 0.038% (+/-0.012)

200 0.1 50 All 100.000% (+/-0.000) 0.049% (+/-0.012) 100.000% (+/-0.000) 0.039% (+/-0.013)

Table 4.4: Optimal Experiments of CNN-LSTM model for Movable Gestures
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In Table 6.4 given in Appendix, we have 56 experiments with varied model

configuration of the CNN-LSTM model and all categories of features have

been implemented to find the optimal model for movable gestures. As given in

Table 4.4, we sort the table based on the training accuracy and test accuracy,

the best model has the configuration of 200 neurons on the 1st LSTM input

layer, a dropout rate of 0.1, 50 neurons in the second hidden dense layer and

training purely with only the Gyroscope readings of the data-format. Unlike

the other experiments observed before, this particular model gave us great

results similar to the LSTM model. Lets look more into detail about the

training process and confusion matrix.

(a) (b)

Figure 4.7: Confusion Matrix of the CNN-LSTM model for Movable Gestures

(a) w/o normalizing (b) w/ normalizing

According to Figure 4.8, we get linear accuracy and loss after epoch 4

which doesn’t get affected even at epoch 15. Figure 4.7 gives us confusion

matrix of the described model for the predicted labels and true labels of the
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test data set. Judging from the results, we can conclude that CNN-LSTM

also has favorable results with movable gestures. Thus, we decide to test both

the LSTM and CNN-LSTM models with our real-time predictions using our

application developed for the server.

(a) Epochs Vs. Training Accuracy (b) Epochs Vs. Training Loss

Figure 4.8: Training performance of the CNN-LSTM model for Movable

Gestures

Concluding our analysis, we have seen that sensor fusion or noise filters

affected the performance with and without neural networks drastically that

we decided to ignore any pre-processing of the data sets and it was more

favorable to train the neural networks with completely raw data sets of dif-

ferent features. For the stationary gestures, there was only one option to pick

from i.e. the LSTM model. Regardless of training with various categories of

the features, we found that using all the features was the optimal solution to

predicting our stationary hand-activity gestures. While for movable gestures,

we have two options to choose from i.e. LSTM model with all features or the

CNN-LSTM model with only Gyroscope features. Clearly, there has been
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an impact of categorizing our features and training with fewer features still

gave us same substantial results in terms of CNN-LSTM model thus picking

it for predicting our movable hand-activity gestures. Lets conclude in the

next chapter how the whole system is evaluated.
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Chapter 5

Conclusion

In this paper, we implemented an empirical study about the hands-on in-

ertial sensory modules and data acquisition for our implemented HAR/HGR

system as known as the Gauntlet-X1. The block diagram in Figure 3.11 shows

us the description of the whole smart glove system with its server.

The glove can be connected via USB to any system that can run the

server which is written in Python scripts. Currently the server is running

on the system with CPU Intel Core i7-3537U @ 2.5 Ghz. As the glove is

sampled at 25Hz, the server has two data buffers that collects the gloves

data continuously for buffer sizes of 20 and 40 time steps while the chosen

LSTM and CNN-LSTM models have been uploaded to predict the respective

data buffers which are full. Since our mobile applications are connected to

our server via WLAN network, the server searches for incoming clients that

have acquired the mobile apps mentioned in Chapter 3. But for the clients
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to access the server, the apps are developed with a User Interface(UI) that

would request the user to enter the IP address of the server in order to

avoid interference of unwanted clients. Once any app gets connected, the

predicted gesture of the respective neural network is sent to the client via

TCP/IP packets and server ensures acknowledgement.

The conclusion of this thesis can certainly develop a solid foundation for

future works in terms of neural networks, pattern/gesture recognition, sensor

fusion algorithms, hardware development and firmware development. The

next chapter describes the various possibilities where this project could be a

starting point of such field of work.

58



Chapter 6

Future Work

In this chapter we will explain how the product can be further developed in

various directions and why it should, as this is just a prototype.

Robust hardware - During the hardware design of the Gauntlet’s pro-

totype, we insisted to build it with feasible and easily-available modular

components. But in the future by fabricating our own hardware including

PCB design and flexible wiring, it is possible to accomplish much more in

terms of performance, robustness of the sensors, portability and speed of the

device.

GPU - Considering the burden of computation load of the Gauntlet, we

may even require a GPU or a robust CPU that can accelerate these compu-

tations for further effective data mining and accurate training while saving

time and resources. But again derives the question of integrating all these
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peripherals into a comfortable glove based device.

Cognitive Language - In this thesis paper, We have only targeted ASL

means of communication with the Gauntlet. However, humans have devel-

oped various forms of communication despite hearing or visual impairments.

This prototype can be used to transform all these means into an intuitive

HCI for improved ease of living.

Wireless and Power - As mentioned earlier, the Gauntlet was intended

to be wirelessly accessible, as an addition to the USB support. But this

thesis aimed to accomplish a proof of concept of the idea; power was one

of the major factors the Gauntlet needs to consider. Even using low-power

consuming modules, the prototype would have become much bulkier and

restrict the ease of movement for distinct gestures. However, if the hardware

is designed from scratch, it is a great possibility to add the features of on-

board power supply and wireless interface.

Internet-of-Things (IoT) - At the moment, we have targeted two types

of mobile applications using AR technology. However, there is much more

room for improvement in terms of application such as home automation, CAD

designing and other PC applications. With the current design, it is feasible

to add more applications based on more trained gestures or pre-processed

visualization of the hand.
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Intuitive AR Environment - This paper does not dwell further into the

world of VR /AR environments as the applications were designed to prove

the versatility of the Gauntlet by integrating ML-based gestures with the

3-D world. The possibilities for this kind of interactive device are endless

and there is room for further development of applications to make it more

realistic and integrated in the day to day life of the user.

User Interface - We want to improve the design of UI for the server

and the application side to make it more user friendly. The users will be

able to choose from various options which we provide depending on what all

applications we have integrated with the product. The user will be able to

easily switch between applications with ease.

Regardless, of whether all the features above can be implemented, the

results so far still prove that the Gauntlet can be regarded as a proof of

concept for the basic underlying ideas.
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1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

400 0.25 200 AccMag 97.933% (+/-0.659) 5.014% (+/-1.329) 98.167% (+/-0.624) 3.992% (+/-0.665)

400 0.5 200 AccMag 97.213% (+/-0.413) 7.796% (+/-1.396) 97.778% (+/-1.094) 5.980% (+/-4.267)

400 0.5 150 AccMag 94.619% (+/-1.697) 15.746% (+/-6.172) 92.500% (+/-7.273) 18.913% (+/-12.067)

400 0.25 150 AccMag 97.019% (+/-1.835) 10.357% (+/-8.344) 95.417% (+/-5.347) 10.788% (+/-11.362)

350 0.25 150 AccMag 97.135% (+/-1.616) 8.443% (+/-4.296) 97.639% (+/-1.874) 5.762% (+/-4.762)

350 0.25 200 AccMag 98.568% (+/-0.761) 4.158% (+/-1.364) 97.778% (+/-1.712) 4.384% (+/-2.791)

350 0.5 200 AccMag 96.283% (+/-0.435) 10.397% (+/-1.676) 98.194% (+/-0.196) 4.727% (+/-0.956)

350 0.5 150 AccMag 96.129% (+/-0.646) 12.015% (+/-0.932) 97.917% (+/-0.900) 6.557% (+/-2.114)

400 0.25 200 All 98.908% (+/-1.342) 3.407% (+/-3.931) 99.000% (+/-1.253) 3.290% (+/-4.399)

400 0.5 200 All 99.148% (+/-1.205) 2.447% (+/-2.752) 99.306% (+/-0.196) 2.523% (+/-1.087)

400 0.5 150 All 98.606% (+/-0.528) 4.493% (+/-1.572) 99.028% (+/-0.196) 2.374% (+/-0.446)

400 0.25 150 All 99.032% (+/-0.333) 2.898% (+/-0.959) 98.611% (+/-0.786) 4.264% (+/-2.379)

350 0.25 150 All 99.884% (+/-0.164) 0.919% (+/-0.483) 98.472% (+/-0.520) 3.607% (+/-0.956)

350 0.25 200 All 99.613% (+/-0.468) 1.443% (+/-1.611) 99.167% (+/-0.340) 2.038% (+/-0.478)

350 0.5 200 All 97.909% (+/-1.094) 5.949% (+/-3.143) 94.306% (+/-1.934) 17.348% (+/-8.217)

350 0.5 150 All 99.690% (+/-0.438) 1.054% (+/-0.719) 99.167% (+/-0.900) 3.311% (+/-3.302)

400 0.25 200 Fingers 99.977% (+/-0.046) 0.060% (+/-0.100) 98.583% (+/-0.204) 4.592% (+/-0.989)

400 0.5 200 Fingers 99.923% (+/-0.055) 0.354% (+/-0.178) 96.389% (+/-2.214) 11.807% (+/-8.406)

400 0.5 150 Fingers 99.071% (+/-0.843) 3.214% (+/-2.499) 96.667% (+/-1.701) 11.842% (+/-5.643)

400 0.25 150 Fingers 99.187% (+/-0.251) 2.686% (+/-1.299) 98.472% (+/-0.520) 4.320% (+/-0.717)

350 0.25 150 Fingers 99.729% (+/-0.383) 0.694% (+/-0.764) 99.028% (+/-0.196) 4.744% (+/-0.145)

350 0.25 200 Fingers 99.690% (+/-0.290) 1.199% (+/-0.836) 98.194% (+/-1.094) 4.297% (+/-2.520)

350 0.5 200 Fingers 99.458% (+/-0.383) 2.215% (+/-1.338) 99.167% (+/-0.340) 2.790% (+/-0.527)

350 0.5 150 Fingers 99.729% (+/-0.219) 1.740% (+/-0.792) 99.028% (+/-0.520) 3.425% (+/-2.131)

400 0.25 200 GyrMag 98.118% (+/-1.275) 5.902% (+/-4.678) 94.667% (+/-1.654) 18.886% (+/-2.922)

400 0.5 200 GyrMag 94.774% (+/-0.905) 15.671% (+/-2.663) 95.833% (+/-0.340) 11.144% (+/-0.507)

400 0.5 150 GyrMag 93.302% (+/-1.724) 19.180% (+/-4.556) 95.972% (+/-0.708) 12.019% (+/-2.598)

400 0.25 150 GyrMag 96.554% (+/-0.239) 11.073% (+/-1.509) 97.083% (+/-0.680) 8.312% (+/-1.506)

350 0.25 150 GyrMag 96.167% (+/-0.577) 12.653% (+/-1.875) 95.694% (+/-0.982) 11.118% (+/-1.536)

350 0.25 200 GyrMag 95.935% (+/-2.018) 11.309% (+/-5.079) 92.778% (+/-3.161) 20.504% (+/-6.068)

350 0.5 200 GyrMag 94.580% (+/-0.673) 16.096% (+/-2.676) 95.417% (+/-2.381) 15.496% (+/-6.042)

350 0.5 150 GyrMag 93.457% (+/-1.057) 17.986% (+/-2.637) 93.333% (+/-2.381) 19.379% (+/-6.994)

400 0.25 200 Palm 92.544% (+/-0.945) 19.923% (+/-2.224) 92.667% (+/-1.700) 18.222% (+/-2.212)

400 0.5 200 Palm 85.134% (+/-2.137) 35.236% (+/-2.999) 82.778% (+/-1.094) 34.383% (+/-1.444)

400 0.5 150 Palm 85.288% (+/-2.475) 36.274% (+/-4.834) 88.889% (+/-1.288) 29.540% (+/-2.986)

400 0.25 150 Palm 89.857% (+/-1.178) 26.426% (+/-2.034) 89.028% (+/-3.233) 27.442% (+/-9.100)

350 0.25 150 Palm 88.424% (+/-1.219) 30.119% (+/-2.580) 88.889% (+/-2.643) 30.379% (+/-6.865)

350 0.25 200 Palm 88.386% (+/-1.397) 28.473% (+/-3.768) 91.389% (+/-2.390) 21.663% (+/-3.692)

350 0.5 200 Palm 86.101% (+/-2.726) 33.057% (+/-6.004) 90.000% (+/-3.281) 25.679% (+/-2.685)

350 0.5 150 Palm 82.733% (+/-1.449) 39.304% (+/-2.303) 85.972% (+/-3.161) 36.441% (+/-0.990)

400 0.25 200 PureAcc 95.889% (+/-1.030) 10.060% (+/-2.620) 95.250% (+/-1.253) 9.887% (+/-2.228)

400 0.5 200 PureAcc 96.129% (+/-1.143) 9.615% (+/-1.465) 96.111% (+/-0.708) 10.934% (+/-1.095)

400 0.5 150 PureAcc 93.225% (+/-2.048) 16.187% (+/-5.467) 96.389% (+/-1.416) 7.285% (+/-1.909)

400 0.25 150 PureAcc 96.129% (+/-1.332) 10.479% (+/-3.583) 94.722% (+/-1.416) 9.480% (+/-3.488)

350 0.25 150 PureAcc 96.632% (+/-0.684) 8.868% (+/-1.842) 97.222% (+/-0.196) 6.937% (+/-0.840)

350 0.25 200 PureAcc 95.432% (+/-1.765) 12.963% (+/-5.648) 97.639% (+/-1.039) 7.335% (+/-2.591)

350 0.5 200 PureAcc 95.703% (+/-0.435) 9.223% (+/-0.619) 95.694% (+/-1.375) 11.259% (+/-5.279)

350 0.5 150 PureAcc 96.090% (+/-0.610) 9.831% (+/-0.796) 97.222% (+/-0.520) 7.286% (+/-0.889)

400 0.25 200 PureGyr 99.977% (+/-0.046) 0.139% (+/-0.213) 98.667% (+/-0.408) 6.081% (+/-2.523)

400 0.5 200 PureGyr 98.722% (+/-0.990) 4.239% (+/-3.170) 96.528% (+/-0.520) 11.591% (+/-2.227)

400 0.5 150 PureGyr 96.864% (+/-1.710) 10.581% (+/-5.575) 94.444% (+/-2.553) 15.804% (+/-6.510)

400 0.25 150 PureGyr 98.800% (+/-0.477) 3.765% (+/-1.220) 97.083% (+/-1.179) 7.920% (+/-1.655)

350 0.25 150 PureGyr 97.677% (+/-1.731) 8.224% (+/-6.521) 95.417% (+/-1.179) 17.868% (+/-5.072)

350 0.25 200 PureGyr 98.451% (+/-1.452) 6.172% (+/-6.014) 96.667% (+/-1.800) 10.601% (+/-4.651)

350 0.5 200 PureGyr 96.477% (+/-2.689) 11.188% (+/-9.045) 93.472% (+/-2.750) 17.929% (+/-7.143)

350 0.5 150 PureGyr 98.722% (+/-0.251) 4.665% (+/-1.126) 95.833% (+/-2.453) 12.446% (+/-5.728)

Table 6.1: Experiments on LSTM model for Stationary Gestures
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1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

400 0.25 200 AccMag 97.836% (+/-0.827) 5.600% (+/-1.790) 98.770% (+/-0.885) 3.304% (+/-2.061)

400 0.25 150 AccMag 98.633% (+/-0.887) 3.547% (+/-1.988) 96.995% (+/-0.697) 7.920% (+/-0.683)

400 0.5 200 AccMag 97.722% (+/-0.492) 6.141% (+/-1.284) 96.995% (+/-1.961) 9.554% (+/-6.197)

400 0.5 150 AccMag 97.380% (+/-0.279) 7.326% (+/-0.562) 95.082% (+/-1.673) 10.931% (+/-2.533)

350 0.25 200 AccMag 98.595% (+/-0.685) 3.606% (+/-1.455) 96.858% (+/-1.843) 8.649% (+/-5.058)

350 0.25 150 AccMag 98.064% (+/-0.492) 4.860% (+/-0.733) 97.951% (+/-0.885) 6.139% (+/-2.477)

350 0.5 200 AccMag 98.140% (+/-0.376) 5.064% (+/-0.890) 97.951% (+/-0.580) 5.104% (+/-1.350)

350 0.5 150 AccMag 98.368% (+/-0.352) 5.073% (+/-1.107) 97.268% (+/-0.193) 7.077% (+/-1.662)

400 0.25 200 All 100.000% (+/-0.000) 0.037% (+/-0.001) 100.000% (+/-0.000) 0.185% (+/-0.035)

400 0.25 150 All 100.000% (+/-0.000) 0.038% (+/-0.002) 99.863% (+/-0.193) 1.216% (+/-0.083)

400 0.5 200 All 100.000% (+/-0.000) 0.071% (+/-0.001) 100.000% (+/-0.000) 0.106% (+/-0.014)

400 0.5 150 All 100.000% (+/-0.000) 0.093% (+/-0.002) 100.000% (+/-0.000) 0.079% (+/-0.024)

350 0.25 200 All 100.000% (+/-0.000) 0.047% (+/-0.003) 100.000% (+/-0.000) 0.271% (+/-0.120)

350 0.25 150 All 100.000% (+/-0.000) 0.061% (+/-0.001) 100.000% (+/-0.000) 0.306% (+/-0.062)

350 0.5 200 All 100.000% (+/-0.000) 0.101% (+/-0.011) 100.000% (+/-0.000) 0.117% (+/-0.014)

350 0.5 150 All 100.000% (+/-0.000) 0.113% (+/-0.002) 100.000% (+/-0.000) 0.656% (+/-0.075)

400 0.25 200 Fingers 100.000% (+/-0.000) 0.151% (+/-0.048) 99.454% (+/-0.193) 3.174% (+/-0.423)

400 0.25 150 Fingers 100.000% (+/-0.000) 0.120% (+/-0.048) 99.727% (+/-0.386) 0.879% (+/-0.472)

400 0.5 200 Fingers 99.696% (+/-0.107) 0.944% (+/-0.072) 99.180% (+/-0.000) 6.278% (+/-2.541)

400 0.5 150 Fingers 99.734% (+/-0.142) 0.853% (+/-0.186) 98.770% (+/-0.335) 2.900% (+/-0.872)

350 0.25 200 Fingers 100.000% (+/-0.000) 0.098% (+/-0.008) 98.497% (+/-0.386) 4.652% (+/-0.559)

350 0.25 150 Fingers 100.000% (+/-0.000) 0.103% (+/-0.011) 98.770% (+/-0.000) 6.538% (+/-0.889)

350 0.5 200 Fingers 99.848% (+/-0.142) 0.671% (+/-0.110) 97.951% (+/-1.533) 4.569% (+/-2.628)

350 0.5 150 Fingers 99.696% (+/-0.194) 1.014% (+/-0.419) 98.087% (+/-0.193) 15.866% (+/-3.211)

400 0.25 200 GyrMag 100.000% (+/-0.000) 0.054% (+/-0.009) 99.863% (+/-0.193) 0.386% (+/-0.214)

400 0.25 150 GyrMag 100.000% (+/-0.000) 0.060% (+/-0.010) 100.000% (+/-0.000) 0.471% (+/-0.144)

400 0.5 200 GyrMag 100.000% (+/-0.000) 0.089% (+/-0.010) 99.317% (+/-0.386) 1.666% (+/-0.777)

400 0.5 150 GyrMag 99.962% (+/-0.054) 0.192% (+/-0.082) 100.000% (+/-0.000) 0.140% (+/-0.051)

350 0.25 200 GyrMag 100.000% (+/-0.000) 0.069% (+/-0.008) 99.590% (+/-0.000) 0.761% (+/-0.176)

350 0.25 150 GyrMag 100.000% (+/-0.000) 0.077% (+/-0.008) 100.000% (+/-0.000) 0.299% (+/-0.197)

350 0.5 200 GyrMag 100.000% (+/-0.000) 0.154% (+/-0.041) 100.000% (+/-0.000) 0.140% (+/-0.033)

350 0.5 150 GyrMag 100.000% (+/-0.000) 0.119% (+/-0.016) 99.590% (+/-0.000) 1.084% (+/-0.515)

400 0.25 200 Palm 98.861% (+/-0.186) 3.171% (+/-0.529) 99.044% (+/-0.697) 2.212% (+/-1.378)

400 0.25 150 Palm 99.013% (+/-0.376) 3.036% (+/-0.833) 98.634% (+/-0.511) 2.906% (+/-0.498)

400 0.5 200 Palm 97.570% (+/-1.688) 5.759% (+/-2.960) 97.814% (+/-0.697) 4.460% (+/-1.324)

400 0.5 150 Palm 98.823% (+/-0.194) 3.146% (+/-0.315) 99.180% (+/-0.335) 2.160% (+/-1.008)

350 0.25 200 Palm 98.330% (+/-0.619) 4.355% (+/-1.478) 98.497% (+/-0.193) 3.953% (+/-0.716)

350 0.25 150 Palm 98.140% (+/-0.284) 3.903% (+/-0.830) 98.497% (+/-0.193) 3.569% (+/-1.054)

350 0.5 200 Palm 98.785% (+/-0.439) 4.095% (+/-1.657) 97.951% (+/-0.335) 5.993% (+/-1.981)

350 0.5 150 Palm 97.988% (+/-0.268) 5.661% (+/-1.231) 98.770% (+/-0.580) 4.077% (+/-1.960)

400 0.25 200 PureAcc 97.798% (+/-0.194) 5.191% (+/-0.415) 96.858% (+/-1.022) 6.173% (+/-2.567)

400 0.25 150 PureAcc 97.836% (+/-0.161) 6.371% (+/-0.595) 96.585% (+/-2.534) 9.890% (+/-6.612)

400 0.5 200 PureAcc 97.874% (+/-0.299) 5.936% (+/-0.137) 97.678% (+/-0.697) 5.664% (+/-1.934)

400 0.5 150 PureAcc 96.507% (+/-0.757) 8.546% (+/-1.979) 97.678% (+/-1.843) 6.337% (+/-2.737)

350 0.25 200 PureAcc 97.950% (+/-0.405) 4.976% (+/-0.961) 93.033% (+/-2.035) 20.456% (+/-7.335)

350 0.25 150 PureAcc 97.608% (+/-0.566) 6.007% (+/-0.584) 99.044% (+/-0.386) 3.075% (+/-0.415)

350 0.5 200 PureAcc 96.241% (+/-0.161) 8.424% (+/-0.214) 98.770% (+/-0.669) 3.781% (+/-0.919)

350 0.5 150 PureAcc 96.887% (+/-0.512) 7.376% (+/-1.152) 98.907% (+/-0.386) 3.755% (+/-0.277)

400 0.25 200 PureGyr 99.582% (+/-0.512) 2.208% (+/-2.667) 98.087% (+/-0.193) 8.485% (+/-1.496)

400 0.25 150 PureGyr 99.848% (+/-0.142) 0.667% (+/-0.492) 98.497% (+/-0.193) 7.148% (+/-0.795)

400 0.5 200 PureGyr 99.317% (+/-0.405) 2.180% (+/-0.989) 97.404% (+/-0.697) 12.379% (+/-5.643)

400 0.5 150 PureGyr 99.506% (+/-0.299) 1.769% (+/-0.673) 98.907% (+/-0.511) 6.075% (+/-3.000)

350 0.25 200 PureGyr 99.734% (+/-0.194) 0.740% (+/-0.335) 98.087% (+/-0.386) 6.444% (+/-0.740)

350 0.25 150 PureGyr 99.924% (+/-0.107) 0.483% (+/-0.306) 96.995% (+/-0.386) 8.669% (+/-0.725)

350 0.5 200 PureGyr 99.355% (+/-0.561) 2.857% (+/-2.200) 96.995% (+/-1.932) 14.517% (+/-5.794)

350 0.5 150 PureGyr 99.317% (+/-0.093) 2.006% (+/-0.197) 97.814% (+/-0.193) 7.445% (+/-0.921)

Table 6.2: Experiments on LSTM for Movable Gestures
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1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

200 0.1 100 AccMag 97.716% (+/-0.772) 6.119% (+/-1.722) 98.750% (+/-0.340) 3.977% (+/-0.321)

200 0.1 50 AccMag 96.516% (+/-0.810) 8.761% (+/-2.562) 99.444% (+/-0.520) 2.586% (+/-0.789)

200 0.2 100 AccMag 96.554% (+/-1.291) 7.639% (+/-2.864) 97.917% (+/-0.900) 5.718% (+/-2.092)

200 0.2 50 AccMag 97.561% (+/-0.962) 6.169% (+/-1.763) 98.056% (+/-1.195) 5.457% (+/-2.902)

150 0.1 100 AccMag 97.445% (+/-0.190) 7.450% (+/-0.926) 98.333% (+/-0.589) 4.600% (+/-1.313)

150 0.1 50 AccMag 96.748% (+/-0.664) 9.690% (+/-2.226) 95.833% (+/-4.139) 10.394% (+/-7.285)

150 0.2 100 AccMag 96.554% (+/-1.793) 9.163% (+/-4.457) 98.611% (+/-0.856) 5.006% (+/-1.723)

150 0.2 50 AccMag 97.600% (+/-0.631) 6.536% (+/-1.482) 97.639% (+/-2.161) 5.796% (+/-3.891)

200 0.1 100 All 99.032% (+/-0.522) 2.857% (+/-0.995) 97.778% (+/-1.375) 7.026% (+/-5.557)

200 0.1 50 All 99.187% (+/-0.379) 2.528% (+/-1.152) 99.167% (+/-0.340) 1.967% (+/-0.602)

200 0.2 100 All 98.684% (+/-0.646) 4.123% (+/-1.876) 98.611% (+/-0.520) 3.700% (+/-0.162)

200 0.2 50 All 97.909% (+/-1.643) 5.774% (+/-4.627) 96.111% (+/-1.094) 11.494% (+/-2.993)

150 0.1 100 All 98.026% (+/-0.435) 5.660% (+/-1.435) 97.778% (+/-0.520) 4.755% (+/-0.998)

150 0.1 50 All 98.645% (+/-0.772) 3.649% (+/-1.604) 98.472% (+/-0.196) 6.221% (+/-1.391)

150 0.2 100 All 97.948% (+/-1.424) 7.057% (+/-4.287) 97.917% (+/-0.589) 7.295% (+/-3.351)

150 0.2 50 All 98.064% (+/-0.860) 5.690% (+/-2.477) 98.056% (+/-0.196) 5.214% (+/-1.420)

200 0.1 100 Fingers 99.961% (+/-0.055) 0.201% (+/-0.060) 98.194% (+/-0.520) 6.174% (+/-0.982)

200 0.1 50 Fingers 99.961% (+/-0.055) 0.197% (+/-0.037) 99.028% (+/-0.196) 2.652% (+/-0.748)

200 0.2 100 Fingers 99.845% (+/-0.219) 0.687% (+/-0.750) 99.167% (+/-0.340) 2.295% (+/-0.586)

200 0.2 50 Fingers 99.961% (+/-0.055) 0.336% (+/-0.169) 97.778% (+/-0.520) 5.430% (+/-1.186)

150 0.1 100 Fingers 99.884% (+/-0.095) 0.440% (+/-0.236) 98.889% (+/-0.196) 3.593% (+/-1.399)

150 0.1 50 Fingers 99.884% (+/-0.000) 0.503% (+/-0.053) 99.167% (+/-0.000) 1.658% (+/-0.153)

150 0.2 100 Fingers 99.923% (+/-0.110) 0.323% (+/-0.189) 98.194% (+/-0.393) 4.289% (+/-1.196)

150 0.2 50 Fingers 99.961% (+/-0.055) 0.242% (+/-0.103) 97.917% (+/-0.680) 7.781% (+/-1.396)

200 0.1 100 GyrMag 79.017% (+/-3.416) 47.753% (+/-4.597) 77.917% (+/-3.062) 51.003% (+/-5.965)

200 0.1 50 GyrMag 80.062% (+/-0.602) 45.917% (+/-1.202) 79.861% (+/-4.281) 44.527% (+/-5.882)

200 0.2 100 GyrMag 76.500% (+/-3.047) 52.267% (+/-4.807) 75.000% (+/-3.923) 53.140% (+/-5.942)

200 0.2 50 GyrMag 76.345% (+/-2.520) 53.225% (+/-4.210) 78.056% (+/-5.208) 49.747% (+/-7.347)

150 0.1 100 GyrMag 79.133% (+/-0.477) 47.196% (+/-1.363) 75.833% (+/-5.475) 57.190% (+/-13.793)

150 0.1 50 GyrMag 78.591% (+/-0.855) 50.549% (+/-1.351) 77.500% (+/-2.657) 53.340% (+/-7.302)

150 0.2 100 GyrMag 73.597% (+/-3.177) 59.576% (+/-6.100) 77.083% (+/-4.181) 53.680% (+/-8.585)

150 0.2 50 GyrMag 72.125% (+/-2.894) 62.010% (+/-6.058) 75.972% (+/-3.408) 53.231% (+/-4.685)

200 0.1 100 Palm 85.947% (+/-3.212) 31.852% (+/-5.201) 86.667% (+/-3.552) 30.466% (+/-5.101)

200 0.1 50 Palm 85.676% (+/-2.247) 34.238% (+/-4.577) 85.972% (+/-1.712) 33.289% (+/-4.562)

200 0.2 100 Palm 86.450% (+/-3.630) 31.295% (+/-5.932) 85.000% (+/-2.381) 34.918% (+/-4.297)

200 0.2 50 Palm 84.243% (+/-2.121) 37.548% (+/-2.856) 85.000% (+/-1.701) 34.232% (+/-1.365)

150 0.1 100 Palm 86.334% (+/-1.170) 31.992% (+/-0.857) 87.917% (+/-1.227) 29.027% (+/-4.034)

150 0.1 50 Palm 85.211% (+/-2.350) 33.490% (+/-2.645) 80.972% (+/-1.416) 38.866% (+/-2.479)

150 0.2 100 Palm 82.733% (+/-0.881) 39.593% (+/-1.792) 85.833% (+/-0.900) 35.927% (+/-0.685)

150 0.2 50 Palm 85.366% (+/-3.169) 34.778% (+/-5.510) 88.056% (+/-4.388) 27.631% (+/-6.087)

200 0.1 100 PureAcc 95.819% (+/-1.077) 9.896% (+/-2.279) 94.444% (+/-3.087) 12.456% (+/-5.328)

200 0.1 50 PureAcc 96.748% (+/-0.622) 7.281% (+/-0.992) 97.361% (+/-1.678) 7.748% (+/-2.457)

200 0.2 100 PureAcc 97.174% (+/-0.712) 7.284% (+/-1.068) 95.833% (+/-0.340) 9.005% (+/-0.495)

200 0.2 50 PureAcc 95.548% (+/-0.438) 9.920% (+/-1.076) 98.611% (+/-0.196) 5.642% (+/-0.618)

150 0.1 100 PureAcc 96.516% (+/-0.095) 6.881% (+/-0.213) 97.500% (+/-0.340) 6.900% (+/-0.733)

150 0.1 50 PureAcc 96.283% (+/-1.150) 8.505% (+/-2.313) 96.806% (+/-0.196) 9.338% (+/-0.865)

150 0.2 100 PureAcc 96.748% (+/-0.342) 8.077% (+/-0.974) 96.250% (+/-1.559) 7.758% (+/-2.321)

150 0.2 50 PureAcc 95.974% (+/-0.428) 9.547% (+/-1.614) 95.833% (+/-0.589) 11.606% (+/-2.103)

200 0.1 100 PureGyr 99.884% (+/-0.095) 0.652% (+/-0.244) 95.417% (+/-0.680) 18.150% (+/-4.154)

200 0.1 50 PureGyr 100.000% (+/-0.000) 0.431% (+/-0.033) 95.417% (+/-0.340) 13.945% (+/-0.443)

200 0.2 100 PureGyr 99.497% (+/-0.290) 2.152% (+/-1.346) 95.833% (+/-1.483) 14.690% (+/-2.833)

200 0.2 50 PureGyr 99.961% (+/-0.055) 0.536% (+/-0.173) 93.611% (+/-0.520) 18.782% (+/-2.397)

150 0.1 100 PureGyr 99.845% (+/-0.219) 0.993% (+/-0.599) 93.611% (+/-0.520) 28.009% (+/-1.330)

150 0.1 50 PureGyr 99.768% (+/-0.164) 1.110% (+/-0.225) 94.444% (+/-0.520) 15.761% (+/-2.171)

150 0.2 100 PureGyr 99.226% (+/-1.014) 2.419% (+/-2.549) 93.750% (+/-2.357) 20.315% (+/-6.176)

150 0.2 50 PureGyr 100.000% (+/-0.000) 0.561% (+/-0.071) 95.556% (+/-0.520) 14.302% (+/-1.833)

Table 6.3: Experiments on CNN-LSTM for Stationary Gestures
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1st Layer nodes Dropout rate 2nd Layer nodes Types of Features
Training Test

Accuracy (+/-) Loss (+/-) Accuracy (+/-) Loss (+/-)

200 0.1 100 AccMag 97.532% (+/-1.249) 7.024% (+/-2.558) 96.038% (+/-1.581) 10.522% (+/-2.706)

200 0.1 50 AccMag 98.747% (+/-0.335) 3.511% (+/-0.802) 98.634% (+/-0.193) 4.397% (+/-0.642)

200 0.2 100 AccMag 98.709% (+/-0.268) 4.056% (+/-0.784) 97.541% (+/-2.090) 6.132% (+/-3.105)

200 0.2 50 AccMag 98.557% (+/-0.352) 4.365% (+/-1.244) 97.678% (+/-0.697) 5.690% (+/-1.873)

150 0.1 100 AccMag 98.064% (+/-0.426) 4.964% (+/-1.273) 98.907% (+/-0.193) 3.666% (+/-1.112)

150 0.1 50 AccMag 97.722% (+/-0.581) 6.836% (+/-0.992) 98.634% (+/-0.193) 3.810% (+/-0.829)

150 0.2 100 AccMag 98.026% (+/-0.598) 5.623% (+/-1.060) 98.361% (+/-0.580) 4.219% (+/-0.785)

150 0.2 50 AccMag 97.722% (+/-0.518) 5.782% (+/-1.527) 97.678% (+/-0.842) 5.001% (+/-1.483)

200 0.1 100 All 100.000% (+/-0.000) 0.035% (+/-0.003) 100.000% (+/-0.000) 0.038% (+/-0.012)

200 0.1 50 All 100.000% (+/-0.000) 0.049% (+/-0.012) 100.000% (+/-0.000) 0.039% (+/-0.013)

200 0.2 100 All 100.000% (+/-0.000) 0.050% (+/-0.014) 100.000% (+/-0.000) 0.140% (+/-0.110)

200 0.2 50 All 100.000% (+/-0.000) 0.090% (+/-0.041) 100.000% (+/-0.000) 0.046% (+/-0.019)

150 0.1 100 All 100.000% (+/-0.000) 0.052% (+/-0.016) 100.000% (+/-0.000) 0.036% (+/-0.007)

150 0.1 50 All 100.000% (+/-0.000) 0.093% (+/-0.015) 100.000% (+/-0.000) 0.198% (+/-0.107)

150 0.2 100 All 100.000% (+/-0.000) 0.075% (+/-0.010) 100.000% (+/-0.000) 0.052% (+/-0.018)

150 0.2 50 All 100.000% (+/-0.000) 0.110% (+/-0.022) 100.000% (+/-0.000) 0.068% (+/-0.020)

200 0.1 100 Fingers 99.962% (+/-0.054) 0.446% (+/-0.036) 99.454% (+/-0.386) 2.027% (+/-1.168)

200 0.1 50 Fingers 99.924% (+/-0.054) 0.459% (+/-0.080) 99.590% (+/-0.000) 1.304% (+/-0.282)

200 0.2 100 Fingers 99.848% (+/-0.142) 0.827% (+/-0.153) 99.454% (+/-0.193) 1.550% (+/-0.547)

200 0.2 50 Fingers 99.468% (+/-0.598) 1.609% (+/-1.224) 99.727% (+/-0.193) 1.440% (+/-0.670)

150 0.1 100 Fingers 99.241% (+/-0.673) 2.355% (+/-1.119) 98.907% (+/-0.842) 2.640% (+/-2.071)

150 0.1 50 Fingers 99.734% (+/-0.234) 1.031% (+/-0.588) 99.863% (+/-0.193) 0.737% (+/-0.349)

150 0.2 100 Fingers 99.658% (+/-0.246) 1.300% (+/-0.302) 99.863% (+/-0.193) 0.760% (+/-0.060)

150 0.2 50 Fingers 99.165% (+/-0.234) 2.937% (+/-0.485) 99.863% (+/-0.193) 1.560% (+/-0.281)

200 0.1 100 GyrMag 100.000% (+/-0.000) 0.110% (+/-0.076) 100.000% (+/-0.000) 0.112% (+/-0.069)

200 0.1 50 GyrMag 100.000% (+/-0.000) 0.057% (+/-0.003) 99.863% (+/-0.193) 0.316% (+/-0.121)

200 0.2 100 GyrMag 100.000% (+/-0.000) 0.058% (+/-0.006) 100.000% (+/-0.000) 0.046% (+/-0.018)

200 0.2 50 GyrMag 100.000% (+/-0.000) 0.088% (+/-0.028) 100.000% (+/-0.000) 0.119% (+/-0.017)

150 0.1 100 GyrMag 100.000% (+/-0.000) 0.066% (+/-0.006) 100.000% (+/-0.000) 0.269% (+/-0.116)

150 0.1 50 GyrMag 100.000% (+/-0.000) 0.093% (+/-0.013) 99.727% (+/-0.193) 0.334% (+/-0.176)

150 0.2 100 GyrMag 100.000% (+/-0.000) 0.178% (+/-0.070) 99.590% (+/-0.335) 0.739% (+/-0.476)

150 0.2 50 GyrMag 100.000% (+/-0.000) 0.211% (+/-0.050) 100.000% (+/-0.000) 0.087% (+/-0.022)

200 0.1 100 Palm 98.747% (+/-0.246) 3.488% (+/-0.812) 97.404% (+/-1.022) 6.314% (+/-1.576)

200 0.1 50 Palm 99.355% (+/-0.194) 1.706% (+/-0.388) 98.361% (+/-1.207) 5.115% (+/-3.210)

200 0.2 100 Palm 99.317% (+/-0.372) 2.160% (+/-0.987) 98.497% (+/-0.193) 2.755% (+/-0.753)

200 0.2 50 Palm 98.595% (+/-0.268) 3.741% (+/-1.041) 98.224% (+/-0.193) 4.201% (+/-0.877)

150 0.1 100 Palm 98.937% (+/-0.215) 3.215% (+/-0.460) 99.044% (+/-0.193) 2.150% (+/-0.423)

150 0.1 50 Palm 98.140% (+/-0.352) 4.984% (+/-0.839) 98.634% (+/-0.511) 4.693% (+/-1.462)

150 0.2 100 Palm 98.519% (+/-0.738) 4.060% (+/-1.584) 97.404% (+/-0.966) 6.059% (+/-1.693)

150 0.2 50 Palm 98.899% (+/-0.376) 3.269% (+/-0.786) 98.087% (+/-0.193) 5.245% (+/-0.371)

200 0.1 100 PureAcc 97.532% (+/-0.545) 5.842% (+/-0.118) 96.858% (+/-1.022) 8.365% (+/-2.946)

200 0.1 50 PureAcc 96.849% (+/-0.468) 7.468% (+/-0.599) 95.765% (+/-1.022) 9.293% (+/-0.861)

200 0.2 100 PureAcc 96.317% (+/-0.879) 8.650% (+/-1.704) 97.131% (+/-0.580) 6.838% (+/-1.390)

200 0.2 50 PureAcc 97.570% (+/-0.512) 6.290% (+/-1.125) 97.814% (+/-0.386) 5.222% (+/-0.606)

150 0.1 100 PureAcc 96.393% (+/-0.954) 8.665% (+/-2.519) 98.361% (+/-0.885) 5.704% (+/-2.040)

150 0.1 50 PureAcc 97.760% (+/-0.459) 5.819% (+/-0.773) 98.224% (+/-1.352) 7.002% (+/-3.952)

150 0.2 100 PureAcc 96.811% (+/-0.246) 7.652% (+/-0.652) 96.448% (+/-0.193) 9.046% (+/-0.455)

150 0.2 50 PureAcc 97.342% (+/-0.268) 7.768% (+/-0.795) 95.902% (+/-1.739) 9.735% (+/-4.514)

200 0.1 100 PureGyr 98.519% (+/-0.335) 4.420% (+/-0.827) 96.858% (+/-1.175) 9.156% (+/-4.906)

200 0.1 50 PureGyr 98.747% (+/-0.161) 4.213% (+/-0.893) 98.224% (+/-0.842) 5.374% (+/-2.190)

200 0.2 100 PureGyr 98.368% (+/-0.545) 5.144% (+/-1.878) 99.044% (+/-0.193) 3.255% (+/-0.307)

200 0.2 50 PureGyr 98.064% (+/-0.335) 6.580% (+/-0.814) 97.268% (+/-1.175) 7.034% (+/-2.481)

150 0.1 100 PureGyr 98.026% (+/-0.234) 5.677% (+/-0.753) 98.634% (+/-0.193) 4.634% (+/-0.957)

150 0.1 50 PureGyr 98.102% (+/-0.299) 5.627% (+/-1.320) 96.585% (+/-1.022) 10.005% (+/-2.105)

150 0.2 100 PureGyr 97.874% (+/-0.568) 6.559% (+/-0.211) 97.131% (+/-0.885) 10.042% (+/-1.792)

150 0.2 50 PureGyr 96.393% (+/-1.263) 9.600% (+/-3.560) 96.038% (+/-0.842) 9.614% (+/-1.383)

Table 6.4: Experiments on CNN-LSTM for Movable Gestures
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